Презентация. Валы и оси

Скачать презентацию




ТЕМА 3. ВАЛЫ И ПОДШИПНИКИ. ЛЕКЦИЯ № 9. ВАЛЫ И ОСИ (ВиО). Вопросы, изложенные в лекции: 1. Назначение, классификация ВиО, применение в МГКМ. 2. Материалы для изготовления ВиО, термическая и механическая обработка. 3. Критерии работоспособности и расчет ВиО. Учебная литература: Детали машин и подъемное оборудование. Под рук. Г.И. Мельникова - М.: Воениздат, 1980. стр. 145-166. Н.Г. Куклин и др. Детали машин: Учебник для техникумов / Н.Г. Куклин, Г.С. Куклина, В.К. Житков.- 5-е изд., перераб. и допол.- М.: Илекса, 1999. стр. 307-320. Соловьев В.И. Детали машин (Курс лекций. II часть). - Новосибирск: НВИ, 1997. стр. 106-127.
 


Назначение, классификация ВиО, применение в МГКМ. Определения: Вал – деталь машины или механизма предназначенная для передачи вращающего или крутящего момента вдоль своей осевой линии (рис. 9.1). Ось – деталь машины или механизма, предназначенная для поддержания вращающихся частей и не участвующая в передаче полезного вращающего или крутящего момента (рис. 9.2). Рис. 9.1. Вал редуктора. Рис. 9.2.Ось барабана лебёдки: а) вращающаяся; б) неподвижная.
 


Классификация валов и осей: 1. По форме продольной геометрической оси ? 1.1. прямые (продольная ось – прямая линия), валы редукторов, валы коробок передач гусеничных и колёсных машин; 1.2. коленчатые (продольная геометрическая ось разделена на несколько параллельных отрезков, смещённых друг относительно друга в радиальном направлении), например, коленвал двигателя внутреннего сгорания; 1.3. гибкие (продольная геометрическая ось является линией переменной кривизны, изменяемой в процессе работы механизма или при монтажно-демонтажных мероприятиях), вал привода спидометра автомобилей. 2. По функциональному назначению ? 2.1. валы передач, они несут на себе элементы, передающие вращающий момент (зубчатые или червячные колёса, шкивы, звёздочки, муфты и т.п.) и в большинстве своём снабжены концевыми частями, выступающими за габариты корпуса механизма; 2.2. трансмиссионные валы для распределения мощности одного источника к нескольким потребителям; 2.3. коренные валы ? валы, несущие на себе рабочие органы исполнительных механизмов (коренные валы станков, несущие на себе обрабатываемую деталь или инструмент называют шпинделями).
 


Классификация валов и осей (продолжение): 3. Прямые валы по форме исполнения и наружной поверхности ? 3.1. гладкие валы имеют одинаковый диаметр по всей длине; 3.2. ступенчатые валы содержат участки, отличающиеся друг от друга диаметрами; 3.3. полые валы снабжены осевым отверстием, простирающимся на большую часть длины вала; 3.4. шлицевые валы по внешней цилиндрической поверхности имеют продольные выступы – шлицы, равномерно расположенные по окружности и предназначенные для передачи моментной нагрузки от или к деталям, непосредственно участвующим в передаче вращающего момента; 3.5. валы, совмещённые с элементами, непосредственно участвующими в передаче вращающего момента (вал-шестерня, вал-червяк).
 


Конструктивные элементы валов представлены на рис. 9.3. Рис. 9.3. Основные элементы вала. С цапфами вала взаимодействуют элементы, обеспечивающие возможность его вращения, удерживающие вал в необходимом для нормальной работы положении и воспринимающие нагрузку со стороны вала. Подшипники ? элементы, воспринимающие радиальную нагрузку (или вместе с радиальной и осевую). Подпятники ? элементы, предназначенные для восприятия только осевой нагрузки. Буртик ? кольцевое утолщение вала малой протяжённости, составляющее с ним одно целое и являющееся ограничмтелем осевого перемещения самого вала или насаженных на него деталей. Заплечик ? торцовая поверхность между меньшим и большим диаметрами вала, служащая для опирания насаженных на вал деталей. Цапфы ? опорные части валов и осей, которые передают действующие на них нагрузки корпусным деталям. Шейка ? цапфа в средней части вала. Шип ? концевая цапфа, передающая на корпус только радиальную или радиальную и осевую нагрузки вместе. Пята ? концевая цапфа, передающая только осевую нагрузку.
 


Галтель ? переходная поверхность от цилиндрической части вала к заплечику, выполненная обычно без удаления материала с цилиндрической и торцевой поверхности (рис. 9.4. б, в). Рис. 9.4. Различные способы оформления переходной части между цилиндрической поверхностью и заплечиком. Канавка ? небольшое углубление на цилиндрической поверхности вала (рис. 9.4. а, г, е) Поднутрение ? углубление малой протяжённости на торцевой поверхности заплечика вала, выполненное вдоль оси вала (рис. 9.4. д). Наклонная канавка (рис. 9.4. е) совмещает достоинства цилиндрической канавки и поднутрения. Цапфы валов могут иметь форму различных тел вращения (рис. 9.5): цилиндрическую, коническую или сферическую. Шейки и шипы чаще всего выполняют в форме цилиндра (рис. 9.5 а, б). Рис. 9.5. Разновидности цапф
 


Выходные концы валов (рис. 9.1; 9.7) обычно имеют цилиндрическую или коническую форму и снабжаются шпоночными пазами или шлицами для передачи вращающего момента. Рис. 9.7. Вал цилиндрической передачи в сборе с шестерней и подшипниками качения.
 


Материалы для изготовления ВиО, термическая и механическая обработка. Требования к материалам валов и осей: 1) высокая усталостная прочность (способность противостоять знакопеременным нагрузкам), 2) жесткостью (иметь высокий модуль упругости), 3) хорошая обрабатываемость. Наиболее полно этим требованиям удовлетворяют углеродистые и легированные стали. Малонагруженные валы изготавливают из углеродистых сталей Ст5, Ст6. 1. Качественные среднеуглеродистые стали марок 40, 45, 50 используют для валов стационарных машин и механизмов. Заготовку из этих сталей подвергают улучшающей термической обработке (HRCэ ? 36) перед механической обработкой. Валы точат на токарном станке, посадочные места и цапфы шлифуют на шлифовальном станке. 2. Среднеуглеродистые легированные стали марок 40Х, 45Х, 40ХН, 40ХНМА, 35ХГСА используют для валов ответственных передач подвижных машин (валы коробок передач гусеничных машин). Улучшающей термообработке (HRCэ ? 45) обычно подвергают деталь уже после предварительной токарной обработки. Посадочные поверхности и цапфы окончательно шлифуют на шлифовальных станках.
 


3. Мало- и среднеуглеродистые легированные стали марок 20Х, 12ХН3А, 18ХГТ, 25ХГТ, 38Х2МЮА идут на валы нагруженных передач, работающих в реверсивном режиме (шлицевые валы коробок передач колёсных машин). Вал, изготовленный с минимальным припуском под окончательную обработку, подвергается поверхностной химико-термической обработке (цементация, азотирование и т.п.), закаливается до высокой поверхностной твердости (HRCэ 55…65). Рабочие поверхности шлицов, посадочные поверхности и поверхности цапф шлифуются после термической обработки с целью получения необходимой точности.
 


Основными критериями работоспособности валов и вращающихся осей являются усталостная прочность и жёсткость. При расчете осей и валов их прочность оценивают по коэффициенту запаса усталостной прочности, а жёсткость – величиной прогиба под действием рабочих нагрузок, углом поворота отдельных сечений (чаще всего опорных сечений цапф) в плоскости осевого сечения и углом закручивания поперечных сечений под действием крутящего момента. Таким образом, основными расчётными нагрузочными факторами яв­ляются крутящие T и изгибающие M моменты. Влияние на прочность вала растягивающих и сжимающих сил само по себе незначительно и обычно не учитывается. Расчёт вала должен включать три основных этапа: 1) проектировочный расчёт, 2) формирование расчетной схемы и 3) проверочный расчёт. В некоторых случаях к этим трём этапам расчёта добавляются и другие, например, расчёт на колебания (расчёт вибрационной стойкости), расчёт тепловых деформаций, теплостойкости и т.п. Проектный расчёт валов производят только на статическую прочность по передаваемому крутящему моменту T. При этом расчёте определяется наименьший диаметр вала, а с целью компенсации неучтённых изгибных нагрузок и других факторов, влияющих на прочность вала, принимают заниженные значения допускаемых напряжений [?]к ? (0,025…0,030)?В. ; (9.1) Критерии работоспособности и расчет ВиО.
 


где к – максимальные касательные напряжения, действующие во внешних волокнах опасного сечения вала; Tк - крутящий момент, передаваемый через это сечение; Wп – полярный момент инерции рассматриваемого сечения. Для валов, имеющих круговое или кольцевое (для полых валов) поперечное сечение, из (9.1) получаем ; (9.2) где D – внешний диаметр вала; ? = d/D – относительный диаметр осевого отверстия полого вала (d – абсолютное значение диаметра этого отверстия). Для ? ? 0,5 расчёт полого вала как сплошного даёт погрешность менее 2,5% от диаметра вала, что позволяет рассчитывать толстостенные валы как сплошные (выражение в скобках принять равным 1). Полученный таким расчётом диаметр вала округляют до ближайшего большего значения из рядов нормальных линейных размеров по ГОСТ 6636-69. Диаметры других ступеней вала и продольные размеры устанавливают из конструктивных соображений в процессе эскизного проектирования механизма.
 


Формирование расчётной схемы возможно только после полного конструктивного оформления вала на основе проектного расчёта, эскизного проектирования, подбора подшипников и расчёта конструктивных элементов, участвующих в передаче вращающего момента. При формировании расчётной схемы вал обычно представляют в виде балки, лежащей на опорах (число опор обычно равно числу подшипников), одна из которых считается закреплённой в осевом направлении. Если вал установлен в корпусе посредством радиальных или сферических подшипников, опору считают расположенной на геометрической оси вала в точке пересечения с поперечной осью симметрии подшипника. При использовании радиально-упорных подшипников за точку опоры принимают точку продольной геометрической оси вала, лежащую на её пересечении с нормалью к поверхности качения, проведённой через центр тел качения. Для подшипников скольжения, а также при установке сдвоенных подшипников качения за точку опоры принимают точку, лежащую на оси вращения и расположенную на расстоянии, равном 0,2…0,3 длины подшипника (суммарной длины пары подшипников качения) от его (их) внутренней кромки. Силы, действующие на вал со стороны ступиц шкивов, шестерён, звёздочек и других элементов, считают приложенными посередине ступицы, если последняя расположена между подшипниками, и на расстоянии 0,25…0,3 длины ступицы со стороны её внутреннего края, при её консольной установке (то есть на конце вала).
 


Проверочный расчёт валов производится после формирования расчётной схемы и уточнения всех нагрузок, как по величине, так и по направлению. Этот вид расчёта предусматривает проверку вала на статическую прочность по наибольшей возможной кратковременной нагрузке и на усталостную прочность при переменных напряжениях. В последнем случае вычисляется коэффициент фактического запаса прочности в предположительно опасных сечениях, намечаемых предварительно по эпюре моментов с учётом размеров поперечного сечения и зон концентрации напряжений. На статическую прочность валы рассчитывают по наибольшей возможной кратковременной нагрузке с учётом динамических и ударных воздействий. В этом случае эквивалентное напряжение в наружном волокне вала ; (9.3) где и – максимальное напряжение от изгиба; к – наибольшее напряжение кручения. Поскольку и = Mи / Wи, а к = Tк / Wк, где Wи и Wк момент сопротивления вала в опасном сечении изгибу и кручению, соответственно, и после подстановки всех значений в (9.3) получим . (9.5)
 


Зная эквивалентные напряжения, можно проверить запас прочности по пределу текучести , (9.6) где нормативный запас прочности [n] обычно принимают равным 1,2…1,8. Проверочный расчёт на сопротивление усталости проводят по максимальной длительно действующей нагрузке без учёта кратковременных пиковых нагрузок (возникающих, например, во время пуска). Для каждого опасного сечения, установленного в соответствии с эпюрами изгибающих и крутящих моментов, определяют расчётный коэффициент запаса прочности S и сравнивают его с допускаемым [S] (обычно принимают [S] = 1,2…2,5) по выражению ; (9.7) где S? и S? - коэффициенты запаса прочности по нормальным и касательным напряжениям соответственно:
 


(9.8) где ?-1 и ?-1 – пределы выносливости для материала вала при симметричном цикле изгиба и кручения; а и а – амплитуды изменения напряжений изгиба и кручения; ?m и ?m – средние значения за цикл тех же напряжений; ?? и ?? ? коэффициенты чувствительности материала вала к асимметрии цикла напряжений (?? ? 0,5???; 0,05???? 0,2); K?D и K?D – коэффициенты снижения пределов выносливости по изгибу и кручению, определяемые по формулам: (9.9) в которых K? и K? - эффективные коэффициенты концентрации напряжений для данного сечения вала в зависимости от его формы, Kd – коэффициент влияния абсолютных размеров поперечного сечения, KF – коэффициент влияния шероховатости поверхности вала (для посадок с натягом KF ? 1), Kv – коэффициент, учитывающий упрочнение поверхности (при отсутствии поверхностного упрочнённого слоя Kv ? 1). Перечисленные коэффициенты устанавливаются по справочным данным с учётом материала и конструкции рассчитываемого вала.
 


Пределы выносливости ?-1 и ?-1 для улучшенных или нормализованных углеродистых и углеродистых легированных сталей с известным пределом прочности В, при симметричном цикле изгиба и кручения можно определить по эмпирическим зависимостям (9.10) где все значения напряжений в Н/мм2 (МПа). Амплитудные и медиальные (средние) значения нормальных а, ?m и касательных а, ?m напряжений вычисляют согласно известным выражениям (9.11) где ?max и ?min, ?max и ?min – максимальные и минимальные значения нормальных и касательных напряжений в точках наружных волокон опасного сечения вала, которые, в свою очередь, вычисляются по соответствующим формулам сопротивления материалов (9.12) Типичными являются такие условия нагружения, когда напряжения от изгиба валов имеют чисто симметричный характер, то есть максимальный и минимальный изгибающие моменты в данном сечении равны по величине и противоположны по направлению. Для таких условий ?a = ?max, а средние напряжения за цикл ?m = 0.
 


Проверочный расчёт валов на жёсткость чаще всего выполняется по нескольким критериям. Наиболее часто при этом виде расчёта определяются: 1) прогиб вала в определённых сечениях (например, под зубчатым или червячным колесом); 2) максимальный прогиб вала; 3) поворот отдельных сечений вала, вызванный его изгибом (чаще всего в местах установки подшипников); 4) закручивание вала под действием рабочих моментов. Исходя из изложенного, получаем следующие критерии жесткости вала: прогиб под элементами зацепления – y ? [y]; полная стрела прогиба– f ? [f]; угол поворота сечения– ? ? [?]; удельный угол закручивания вала– ?0 ? [?0]; где допустимые значения прогибов и углов составляют: Предельный прогиб в месте установки зубчатых колёс при модуле зацепления m цилиндрических ? [y] = 0,01m; конических, гипоидных, глобоидных, червячных ? [y] = 0,005m; полная стрела прогиба ? [f] = 3?10-4l, где l ? полная длина вала; допустимый удельный угол закручивания вала–0,025 ? [?0] ? 1,0 градус/м в зависимости от конструкции и назначения вала. Для осей полный прогиб [f] ? (2…3)?10-3l, где l ? полная длина оси.
 


Проверку прогиба вала в заданных сечениях наиболее удобно выполнять методом перемножения эпюр Максвелла-Мора (непосредственно выполняемое способом Симпсона или способом Верещагина), согласно которому деформация от изгиба в заданном сечении равна ; (9.13) где M1(s) - изгибающий момент от единичной фиктивной нагрузки, приложенной в исследуемом сечении; Mи(s) - изгибающий момент от реально действующей нагрузки; E - модуль упругости материала вала I - осевой момент инерции сечений вала; s - текущая координата сечений вдоль оси вала. Если моменты монотонно изменяются на каждом участке по длине вала, а осевой момент инерции сечений вала I можно считать постоянным по его длине, то выражение (9.13) существенно упрощается. В этом случае по способу Симпсона величина прогиба может быть подсчитана по следующей формуле: ; (9.14) в которой m и M - ординаты однородных участков (таких, на которых нет изломов и скачков) эпюр от единичной фиктивной и реальной нагрузок, а индексы "Л", "С" и "Пр" относятся к левому концу, середине и правому концу каждого участка соответственно. Формула Симпсона особенно удобна для определения прогибов валов при линейных эпюрах изгибающих моментов.
 


А по способу Верещагина при вышеназванных условиях величина прогиба в исследуемом сечении определяется следующим образом: ; (9.15) в которой A- площади однородных участков эпюр изгибающих моментов, а hc - ординаты второй эпюры под центром тяжести этих площадей. Расчет валов на колебания. Колебания валов могут быть поперечными (изгибными) и крутильными. Поперечные вызываются наличием несбалансированных масс - маховиков, шкивов, зубчатых колес и т.п. (рис. 9.8). Крутильные колебания возникают вследствие неравномерности вращательного движения валов, связанных с инерционными деталями, механизма. Рис. 9.8. Схема возникновения поперечной пульсирующей силы В простейшем случае, когда вал соединен с одной вращающейся неуравновешенной массой - маховиком (массой и моментом инерции самого вала в этом случае чаще всего можно пренебречь), деформацию вала при вынужденных колебаниях можно представить следующим образом:
 


. (9.16) Верхнее равенство относится к изгибным колебаниям, нижнее ? к крутильным. В этих равенствах f и ? ? величина смещения (поперечного или углового) присоединенного маховика; Pа и Ma ? возмущающий фактор (сила или момент); m и J ? характеристика инерционности (масса и момент инерции маховика) ?0и и ?0к ? частоты собственных изгибных и крутильных колебаний системы, соответственно; в ? частота действия возмущающего фактора. При этом частота собственных колебаний равна корню квадратному из отношения жесткости к характеристике инерции: . (9.17) где k - изгибная жесткость вала (величина прогиба от действия единичной поперечной силы), а ? - крутильная жесткость вала (величина угла закручивания от действия единичного крутящего момента). В знаменатель обоих выражений (9.16) входит разность между собственной частотой вала и частотой действия вынуждающего фактора. При совпадении этих двух частот величина деформации устремляется в бесконечность, что эквивалентно разрушению.
 


Явление совпадения вынуждающей и собственной частот называется резонансом. Если вынуждающая частота больше собственной, то, вопервых, деформация меняет знак (то есть по направлению становится противоположной вынуждающему фактору), вовторых, с увеличением вынуждающей частоты амплитуда деформации становится все меньше. Большинство валов передач работают в зарезонансном режиме (в >> ?0), и при разгоне и торможении машины вал проходит через область резонанса. Длительная работа вала в резонансном режиме ведёт к увеличению его деформаций, а, следовательно, и напряжений в нём, способствуя тем самым быстрому его разрушению. Следовательно, необходимо сокращать время разгона и торможения, чтобы амплитуда колебаний вала не достигла опасной величины.
 


Конец лекции. Спасибо за внимание!
 

< <       > >