Презентация. Жизнь и виды звёзд

Скачать презентацию




ЭВОЛЮЦИЯ ЗВЕЗД Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.
 


Звезда начинает свою жизнь как холодное разрежённое облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла. В таком состоянии он пребывает большую часть своей жизни, пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии. В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий — в углерод, углерод — в кислород, кислород — в кремний, и наконец — кремний в железо).
 


Рождение звёзд Области звездообразования Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Масса такого облака превышает массу Солнца в 105 - 107 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике. Пока облако свободно вращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, которые вызывают гравитационный коллапс облака. Любые неоднородности в силах, действующих на массу облака, могут инициировать процесс образования звезды. Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием сил гравитационного притяжения собираться вокруг центра будущей звезды. Половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина - на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. В конце концов масса свободно перемещающегося в облаке вещества исчерпывается и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды. В зависимости от начальных массы и скорости вращения молекулярного облака формируются различные системы небесных тел: звёздные скопления, двойные звёзды, звёзды с экзопланетами.
 


Процесс формирования звёзд можно описать единым образом, но последующие стадии развития звезды почти полностью зависят от её массы, и лишь в самом конце звёздной эволюции свою роль может сыграть химический состав. Молодые звёзды малой массы (до трёх масс Солнца) полностью конвективны (перенос теплоты в жидкостях или газах происходит путем перемешивания самого вещества). Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. Так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной, все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании. Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют почти точно так же, как и их меньшие сестры. Звезды с массой больше 8 солнечных масс уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и достигли такой скорости ядерных реакций, что они компенсировали потери энергии на излучение, пока накапливалась масса гидростатического ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, отталкивает их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд больше чем 100—200 масс Солнца. Молодые звёзды Молодые звёзды
 


Астрономы сфотографировали особо активное поведение молодых звезд в туманности NGC 6729, которые «разбрасывают» окружающий их газ и пыль на расстояние до светового года. Отмечается, что туманность NGC 6729 – одна из ближайших к Солнечной системе туманностей, в которых активно идут процессы звездообразования.
 


Середина жизненного цикла звезды Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,07 до около 300 солнечных масс по последним оценкам. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все новые звёзды «занимают своё место» на главной последовательности (область на диаграмме Герцшпрунга—Рассела, содержащая звёзды, источником энергии которых является термоядерная реакция синтеза гелия из водорода) согласно своему химическому составу и массе. Речь идёт не о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды. Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности сотни миллиардов лет, в то время как массивные сверхгиганты уйдут с главной последовательности уже через несколько миллионов лет после формирования. Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.
 


Диаграмма Герцшпрунга - Рассела Диаграмма Герцшпрунга - Рассела показывает зависимость между абсолютной звёздной величиной, светимостью, спектральным классом и температурой поверхности звезды. Неожиданным является тот факт, что звёзды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки. Была предложена в 1910 году независимо Эйнаром Герцшпрунгом и Генри Расселом. Диаграмма используется для классификации звёзд и соответствует современным представлениям о звёздной эволюции. Около 90 % звёзд находятся на главной последовательности. Их светимость обусловлена ядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд - гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики. На следующем слайде представлена сама диаграмма.
 


 
 


Зрелость По прошествии определенного времени - от миллиона до десятков миллиардов лет, в зависимости от начальной массы - звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций. Без давления, возникавшего в ходе этих реакций и уравновешивавшего собственное гравитационное притяжение звезды, звезда снова начинает сжатие, как уже было раньше, в процессе её формирования. Температура и давление снова повышаются, но, в отличие от стадии протозвезды, до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия. Возобновившееся на новом уровне термоядерное горение вещества становится причиной чудовищного расширения звезды. Звезда «разрыхляется», и её размер увеличивается приблизительно в 100 раз. Таким образом звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами. То, что происходит в дальнейшем, вновь зависит от массы звезды.
 


Поздние годы и гибель звёзд Созвездие Центавра и Южный Крест. Южный Крест - справа, Альфа Центавра - слева. На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше, чем коричневый карлик. Звезды с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в ядре прекратятся реакции с участием водорода - их масса слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до той степени, которая инициирует «возгорание» гелия. К таким звёздам относятся красные карлики, такие как Проксима Центавра, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.
 


Звёзды среднего размера Туманность Кошачий Глаз - планетарная туманность, сформировавшаяся после гибели звезды, по массе приблизительно равной солнечной. При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта в её ядре заканчивается водород и начинаются реакции синтеза углерода из гелия. Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается, что приводит к тому, что внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новый этап в жизни звезды и продолжается некоторое время. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет. Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность. В центре туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.
 


Белые карлики Белый карлик, заснятый в 1954 (слева), и в 1994 (справа) Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает серьёзную перестройку звезды и её быстрое перемещение по диаграмме Г-Р. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик, как нейтронная звезда (пульсар) или как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями - вспышками сверхновых. Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.
 


Сверхмассивные звёзды Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад После того, как звезда с массой большей, чем пять солнечных, входит в стадию красного сверхгиганта, её ядро под действием сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра. В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. На этом этапе дальнейший термоядерный синтез становится невозможен. Поэтому давление в нём уже не в состоянии противостоять тяжести наружных слоев звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества - происходит взрыв сверхновой звезды. Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «мусором», и возможно, участвовать в образовании новых звёзд, планет или спутников.
 


Чёрные дыры Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше гравитационного. После этого звезда становится чёрной дырой, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света. Ранее подобные астрофизические объекты называли «сколлапсировавшие звёзды» или «коллапсары» , а также «застывшие звёзды». Граница этой области называется горизонтом событий, а её характерный размер — гравитационным радиусом. Теоретически возможность существования таких областей пространства-времени следует из теории относительности Эйнштейна.Кроме того, чёрными дырами часто называют объекты, не строго соответствующие данному выше определению, а лишь приближающиеся по своим свойствам к такой чёрной дыре — например, это могут быть коллапсирующие звёзды на поздних стадиях коллапса.
 

< <       > >